This tutorial explains how to generate feature importance plots from pyrasgo using without needing to build machine learning models. The feature importance importance is calculated from SHAP values from catboost.

During this tutorial you will calculate the SHAP feature importance when predicting arrival delay for flights in and out of NYC in 2013.


This tutorial uses:

Open a new Jupyter notebook and import the following:

import statsmodels.api as sm
import pandas as pd
import numpy as np
import pyrasgo

Connect to Rasgo

If you haven't done so already, head over to and follow the steps outlined there to create your free account. This account gives you free access to the Rasgo API which will calculate dataframe profiles, generate feature importance score, and produce feature explainability for you analysis. In addition, this account allows you to maintain access to your analysis and share with your colleagues.

rasgo = pyrasgo.login(email='', password='')

Reading the data

The data is from rdatasets imported using the Python package statsmodels.

df = sm.datasets.get_rdataset('flights', 'nycflights13').data

RangeIndex: 336776 entries, 0 to 336775
Data columns (total 19 columns):
 #   Column          Non-Null Count   Dtype  
---  ------          --------------   -----  
 0   year            336776 non-null  int64  
 1   month           336776 non-null  int64  
 2   day             336776 non-null  int64  
 3   dep_time        328521 non-null  float64
 4   sched_dep_time  336776 non-null  int64  
 5   dep_delay       328521 non-null  float64
 6   arr_time        328063 non-null  float64
 7   sched_arr_time  336776 non-null  int64  
 8   arr_delay       327346 non-null  float64
 9   carrier         336776 non-null  object 
 10  flight          336776 non-null  int64  
 11  tailnum         334264 non-null  object 
 12  origin          336776 non-null  object 
 13  dest            336776 non-null  object 
 14  air_time        327346 non-null  float64
 15  distance        336776 non-null  int64  
 16  hour            336776 non-null  int64  
 17  minute          336776 non-null  int64  
 18  time_hour       336776 non-null  object 
dtypes: float64(5), int64(9), object(5)
memory usage: 48.8+ MB

Feature Engineering

Handle null values


year                 0
month                0
day                  0
dep_time          8255
sched_dep_time       0
dep_delay         8255
arr_time          8713
sched_arr_time       0
arr_delay         9430
carrier              0
flight               0
tailnum           2512
origin               0
dest                 0
air_time          9430
distance             0
hour                 0
minute               0
time_hour            0
dtype: int64

As this model will predict arrival delay, the Null values are caused by flights did were cancelled or diverted. These can be excluded from this analysis.


Convert the times from floats or ints to hour and minutes

df['arr_hour'] = df.arr_time.apply(lambda x: int(np.floor(x/100)))
df['arr_minute'] = df.arr_time.apply(lambda x: int(x - np.floor(x/100)*100))
df['sched_arr_hour'] = df.sched_arr_time.apply(lambda x: int(np.floor(x/100)))
df['sched_arr_minute'] = df.sched_arr_time.apply(lambda x: int(x - np.floor(x/100)*100))
df['sched_dep_hour'] = df.sched_dep_time.apply(lambda x: int(np.floor(x/100)))
df['sched_dep_minute'] = df.sched_dep_time.apply(lambda x: int(x - np.floor(x/100)*100))
df.rename(columns={'hour': 'dep_hour',
                   'minute': 'dep_minute'}, inplace=True)

Feature Importance

Remove variables that are not of interest to this analysis with the exclude_columns parameter.

This will open another browser window with the feature importance and return to raw values in response.

target = 'arr_delay'
response = rasgo.evaluate.feature_importance(df, target, exclude_columns=['flight', 'tailnum', 'time_hour', 'year', 'dep_time', 'sched_dep_time', 'arr_time', 'sched_arr_time', 'dep_delay'])

{'url': '',
 'targetfeature': 'arr_delay',
 'featureImportance': {'month': 0.41391112112245904,
  'day': 0.4117113100028012,
  'carrier': 0.47198646615400314,
  'origin': 0.6857863120481936,
  'dest': 0.47936829505796363,
  'air_time': 1.153266291068306,
  'distance': 0.4903008559394087,
  'dep_hour': 2.1234604116574376,
  'dep_minute': 0.0855805224269881,
  'arr_hour': 11.90745875046809,
  'arr_minute': 3.8448685944462557,
  'sched_arr_hour': 9.329975875959654,
  'sched_arr_minute': 3.767534411785733,
  'sched_dep_hour': 0.54279795251197,
  'sched_dep_minute': 0.7199247971796875}}

No-code/low-code data prep and visualization

Request Demo
Try for Free