This tutorial explains how to generate a time series split from scikit-learn to allow out of time validation of machine learning models, why this approach may not be what is needed and how to create true time-based splits with pandas.
This tutorial will use hourly weather data for multiple weather stations (origin) for flights from New York airports in 2013.
Packages
This tutorial uses:
import statsmodels.api as sm
import pandas as pd
import numpy as np
from sklearn.model_selection import TimeSeriesSplit
Reading the data
The data is from rdatasets imported using the Python package statsmodels.
df = sm.datasets.get_rdataset('weather', 'nycflights13').data
df.info()
RangeIndex: 26115 entries, 0 to 26114
Data columns (total 15 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 origin 26115 non-null object
1 year 26115 non-null int64
2 month 26115 non-null int64
3 day 26115 non-null int64
4 hour 26115 non-null int64
5 temp 26114 non-null float64
6 dewp 26114 non-null float64
7 humid 26114 non-null float64
8 wind_dir 25655 non-null float64
9 wind_speed 26111 non-null float64
10 wind_gust 5337 non-null float64
11 precip 26115 non-null float64
12 pressure 23386 non-null float64
13 visib 26115 non-null float64
14 time_hour 26115 non-null object
dtypes: float64(9), int64(4), object(2)
memory usage: 3.0+ MB
array(['EWR', 'JFK', 'LGA'], dtype=object)
Fix dates
time_hour contains the hour of the observation as a string. Convert it to a datetime as observation_time. year, month, day and hour are duplicates and can be dropped from the dataframe.
df['observation_time'] = pd.to_datetime(df.time_hour)
df.drop(columns=['year', 'month', 'day', 'hour', 'time_hour'], inplace=True)
df.head()
origin temp dewp humid wind_dir wind_speed wind_gust precip pressure visib observation_time
0 EWR 39.02 26.06 59.37 270.0 10.35702 NaN 0.0 1012.0 10.0 2013-01-01 01:00:00
1 EWR 39.02 26.96 61.63 250.0 8.05546 NaN 0.0 1012.3 10.0 2013-01-01 02:00:00
2 EWR 39.02 28.04 64.43 240.0 11.50780 NaN 0.0 1012.5 10.0 2013-01-01 03:00:00
3 EWR 39.92 28.04 62.21 250.0 12.65858 NaN 0.0 1012.2 10.0 2013-01-01 04:00:00
4 EWR 39.02 28.04 64.43 260.0 12.65858 NaN 0.0 1011.9 10.0 2013-01-01 05:00:00
Time-based splitting
Scikit-learn TimeSeriesSplit
TimeSeriesSplit doesn't implement true time series split. Instead, it assumes that the data contains a single series with evenly spaced observations ordered by the timestamp. With that data it partitions the first n observations into the train set and the remaining test_size into the test set.
Note this will not work in this case, as the weather data contains three different weather stations, EWR, JFK and LGA. While this data could be resorted to be ordered purely by timestamp, as TimeSeriesSplit will still split on a row count level, not on a date or time boundary.
tss = TimeSeriesSplit(n_splits=2)
train_splits, test_splits = tss.split(df)
train_split = train_splits[1]
test_split = test_splits[1]
print("Train Split:", train_split)
print("Test Split:", test_split)
Train Split: [ 8705 8706 8707 ... 17407 17408 17409]
Test Split: [17410 17411 17412 ... 26112 26113 26114]
train_df = df.iloc[train_split, :]
test_df = df.iloc[test_split, :]
print("Train:", train_df.origin.unique())
print("Test:", test_df.origin.unique())
print("Train:", train_df.observation_time.min(), train_df.observation_time.max())
print("Test:", test_df.observation_time.min(), test_df.observation_time.max())
Train: ['JFK' 'LGA']
Test: ['LGA']
Train: 2013-01-01 01:00:00 2013-12-30 18:00:00
Test: 2013-01-01 02:00:00 2013-12-30 18:00:00
This is not splitting the data on the time value as we need to conduct this analysis correctly.
Time-based splitting with pandas
Calculate the date to split on
min_date = df.observation_time.min()
max_date = df.observation_time.max()
print("Min:", min_date, "Max:", max_date)
Min: 2013-01-01 01:00:00 Max: 2013-12-30 18:00:00
Calculate the train-test cutoff date
train_percent = .75
time_between = max_date - min_date
train_cutoff = min_date + train_percent*time_between
train_cutoff
Timestamp('2013-09-30 19:45:00')
Create the train and test dataframes
train_df = df[df.observation_time <= train_cutoff]
test_df = df[df.observation_time > train_cutoff]
print("Train:", train_df.origin.unique())
print("Test:", test_df.origin.unique())
print("Train:", train_df.observation_time.min(), train_df.observation_time.max())
print("Test:", test_df.observation_time.min(), test_df.observation_time.max())
Train: ['EWR' 'JFK' 'LGA']
Test: ['EWR' 'JFK' 'LGA']
Train: 2013-01-01 01:00:00 2013-09-30 19:00:00
Test: 2013-09-30 20:00:00 2013-12-30 18:00:00
The train and test datasets now contain all of the observation sites with no overlap in dates. These can now be used as the train and test sets in machine learning model training.
Alternatively, to specify the number of days in the training set
days_between = time_between / np.timedelta64(1, 'D')
days_between
363.7083333333333
train_days = 273
train_cutoff = min_date + pd.DateOffset(train_days)
train_df = df[df.observation_time <= train_cutoff]
test_df = df[df.observation_time > train_cutoff]
print("Train:", train_df.origin.unique())
print("Test:", test_df.origin.unique())
print("Train:", train_df.observation_time.min(), train_df.observation_time.max())
print("Test:", test_df.observation_time.min(), test_df.observation_time.max())
Train: ['EWR' 'JFK' 'LGA']
Test: ['EWR' 'JFK' 'LGA']
Train: 2013-01-01 01:00:00 2013-10-01 01:00:00
Test: 2013-10-01 02:00:00 2013-12-30 18:00:0